Ceramic properties

2000

EAAC

250

Alumina (MAC-A940W)

© 2002 Morgan Technical Ceramics, a division of The Morgan Crucible Company plc

Description

Alumina ceramic of **94% Al₂O₃** content. Its excellent combination of mechanical, thermal, electrical and chemical properties are well suited to applications across industry.

Prime features

- Dense, non porous and vacuum tight.
- High mechanical strength and hardness.
- Low thermal expansion.
- High volume resistivity.
- · Resists abrasion and chemical attack.
- Consistent dielectric constant.
- Readily accepts moly-manganese metallizing for high temperature brazing of assemblies.

Typical applications

- Pressure sensors for fluid flow measurement.
- Wear and barrier coatings for sputtering targets.
- Electron tube components.
- · Laser components.

Specifications

• Quality Assurance to ISO 9002.

MAC production capabilities

- Isostatic and dry pressing, green machining.
- CNC grinding and lapping to very tight tolerances.
- Metallising of components.
- · High temperature brazing of assemblies.
- Prototype, batch and volume production.

Physical properties*

Color	White
Bulk density (fired), Mg/m³ [lb/in³]	3.67 [0.132]
Porosity (apparent), %	0 (fully dense)
Rockwell hardness (R45N)	78
Compressive strength, MPa [lb/in²]	>2070 [>300,000]
Flexural strength, MPa [lb/in²]	345 [50,000]

Thermal conductivity, W/m.K [BTU/ft.hr.ºF] @RT 20.5 [11.9]

Thermal	expansion	coefficient,	10 ⁻⁶ /C	[10 ⁻⁶ /°F]

Maximum no-load temperature, C [°F]	1600 [2910]
800-1000C [1470-1830°F]	9.1 [5.1]
600-800C [1110-1470°F]	8.6 [4.8]
400-600C [750-1110°F]	8.0 [4.4]
200-400C [390-750°F]	7.5 [4.2]
25-200C [77-390°F]	6.3 [3.5]

Dielectric strength, dc kV/mm [V/mil] @RT 25.6 [650]

		250	3000	500C
Dielectric constant, K ^I ,	@ 10MHz	9.07	9.53	9.91
	@ 1000MHz	9.04	_	_
	@ 8500MHz	8.98	9.26	9.40
Dissipation factor, tan $\delta,$	@ 10MHz	0.00026	0.00028	0.00341
	@ 1000MHz	0.00062	_	_
	@ 8500MHz	0.00078	0.00155	0.00155
Loss factor, K^{l} .tan δ ,	@ 10MHz	0.00236	0.00267	0.03369
	@ 1000MHz	0.00560	_	_
	@ 8500MHz	0.00700	0.01165	0.01457

Volume resistivity, ohm.cm

rolanio roolotirity, o.		
	@ 25C [77°F]	> 1014
	@ 300C [570°F]	2.0x10 ¹²
	@ 600C [1110°F]	4.6x10 ⁸
	@ 900C [1650°F]	3.5×10^6
Te value, C [°F]		>950 [>1740]

